CIGLR Soil Health and Watershed Modeling Summit Summary

Tom Zimnicki Agriculture Policy Director, Michigan Environmental Council

> Sustainable Phosphorus Alliance Columbus, OH

8/24/18

• 70+ member organizations

- Statewide environmental policy
 - Agriculture, surface/groundwater quality, solid waste management, energy infrastructure, transportation, healthy food access, environmental justice

Summit Overview

Improving models of nutrient loading and HABs through a watershed-scale approach that emphasizes soil health and upland farming practices

Implications of summit

..... And why did a policy NGO lead this....

- → Nutrient reduction planning (i.e. DAP)
- → Funding priorities
- → Solid waste management
- → Research opportunities
- → Unifying message

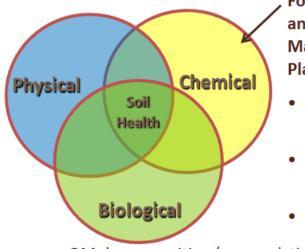
Summit-- Defining soil health

- Soil health is a widely accepted albeit general term, officially defined by USDA as "the continued capacity of soil to function as a vital living ecosystem that sustains plants, animals and humans". Our focus is more on <u>soil function</u> and how changes to the physical, biological, and chemical composition of soil alters its overall function
 - Important soil functions: nutrient cycling, supporting plant growth, carbon sequestration, infiltration/storage, pest/disease suppression
- We could spend endless time figuring out the correct soil health/parameters to include in models. Summit participants decided in the interest of ag sector we should focus on hydrological flows off ag fields (infiltration, water holding capacity); N&P retention; Yield stability/resilience

Soil Health Institute Tier 1 Indicators

• Nutrients

- N, P, K, Micronutrients
- Chemical Indicators
 - Base saturation; CEC; Electrical Conductivity; pH



USDA-NRCS

- Physical Indicators
 - Available water holding capacity; bulk density; infiltration rate; erosion rating; penetration resistance; texture; water stable aggregation
- Biological indicators
 - N mineralization; Organic carbon; carbon mineralization

Healthy soil supports function

- Good Tilth (structure)
- Physical support for plants
- Aeration
- Soil water storage and movement
- Resistance to erosion
- Physical root proliferation & organism movement

- OM decomposition/accumulation
- Nutrient transformations & access
- Disease, disease suppression
- Well-supported microbial community, beneficials, producing plant growth promoting compounds
- Immobilization of toxins

- Focus of Soil Testing and Nutrient Management Planning
- Nutrient storage and release
- Salinity/toxicity prevention
- Energy (C) storage

Janice Thies- Cornell University

(Cornell) Soil health indicators test indicators

Soil	Indicat	tor

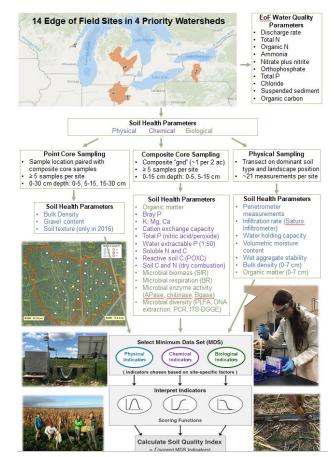
Soil Process (Function)

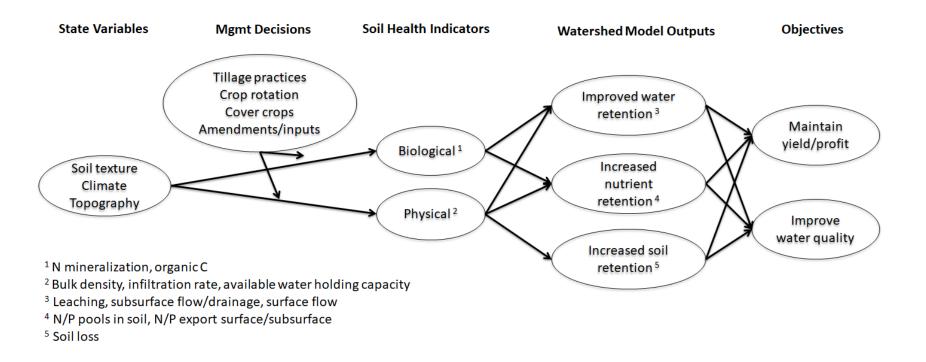
Soil Texture	affects soil analyses and interpretations
Available Water Capacity	plant-available water retention
Surface Hardness	shallow rooting, water intake, air exchange
Subsurface Hardness	deeper rooting, stored water access
Aggregate Stability	aeration, infiltration, shallow rooting, crusting
Organic Matter	energy/C storage, water and nutrient retention
ACE Soil Protein Index	readily-available N for mineralization
Respiration	metabolic activity of the microbial community
Active Carbon	organic material to support biological functions
pH	toxicity, nutrient availability
Phosphorus	P availability, environmental loss potential
Potassium	K availability
Minor Elements (Mg, Fe, Mn, Zn)	micronutrient availability, elemental imbalances

Cornell University

Linking EoF Water Quality to Soil Health

- Create a robust dataset of soil health at EoF and to connect field-scale soil parameters with water quality leave fields
- 14 EoF sites in WI, MI, IN, OH, NY
- Baseline sampling 2016-2017, second round sampling 2018
- Includes nearly all SHI endorsed Tier 1 soil health measurements
- Investigating relationships among microbial properties (biomass), soil structure (bulk density), soil resources (carbon pools), and exported resources (TP/SRP)
- 5 year project





Materials/information from UW-Green Bay

Conceptual design

Current models and soil health inputs

- Best or most viable model?
 - SWAT, APEX, RUSLE2, NTT, P Index, DAYCENT-WQ, PAWS (process-based adaptive watershed simulator, MiState co-developed)

• SWAT/APEX

- \circ %OM in each field \rightarrow SSURGO could influence infiltration and AWC
- $\circ \quad \text{Ksat in each field} \rightarrow \ \text{SSURGO infiltration}$
- \circ AWC \rightarrow SSURGO (or calculated from SSURGO)
- Hydrologic soil group incorporates slope and governs C:N
- Organic N and P
- Labile P
- OVN/USLEP- soil erosion from surface roughness

Model limitations, gaps, immediate needs

- Models were developed with a specific goal in mind; are models conducive to including soil health?
- Static vs. dynamic parameters
 - For example, soil aggregate stability will likely change over time from the addition of organic amendments... can models account for this change over time
- Temporal influences of BMPs
- Data
 - What is the correct soil health information we need to be collecting?
 - Need for more EoF projects and a platform to coordinate datasets across projects
 - Data mining from previous efforts... do we already have good baseline data?
- Research question
 - It is generally accepted that improved soil health increases infiltration.... Is it wise to promote additional infiltration via improved soil health on fields with subsurface tiles?

Soil health gaps

- Long term, field-base data from large number of sites with high diversification/alt management strategies
 - Soil health and water quality data... usually only water quality
- Need to leverage existing research programs for data collection; practitioners and researchers need a concrete list of soil parameters
- Clearer direction of nutrient management recommendations that consider soil health and contribution of SOM to plant nutrition
- What drives legume dominance in cover crop mixtures?
- What drives variation in N fixation rates

Next Steps

- Research(ish) paper
 - Defining soil health
 - How our understanding for soil health into models has changed
 - The evolution of models
 - Gaps in modeling static vs. dynamic variables –
 - Immediate research needs and gaps

• Continuing the conversation and collaboration between researchers, practitioners, and policy implementers