Evaluating historical releases from the Piney Point phosphogypsum facility in Tampa Bay Florida

Amanda R. Chappel¹, Edward J. Phlips², Susan Badylak², William F. Kenney³, Elise S. Morrison¹

¹Department of Environmental Engineering Sciences, University of Florida ²Fisheries and Aquatic Sciences Program, University of Florida ³Land Use and Environmental Change Institute, University of Florida

Sustainable Phosphorous Summit 2022 Anthropocene: Urban Phosphorous and Human Impacts

Background: Phosphogypsum in Florida

- Phosphogypsum (PG) precipitates as a byproduct during the creation of phosphoric acid for fertilizer production
 - 1 t phosphoric acid : 5 t phosphogypsum (Zielinski et al. 2011)
- Stored in repositories termed "Phosphogypsum stacks"
- Heavily concentrated in coastal area threatening aquatic critical zones (ACZs)
- 10⁹ t of phosphogypsum stored in 24 stacks in Florida
 - 17 stacks located in the Tampa Bay area (Silva et al. 2022, Beck et al. 2022)
- Stacks become difficult to maintain over time

Piney Point Phosphogypsum Facility WUSF Public Media

AnthroPO₄cene Impacts on Aquatic Critical Zones

Spills and releases of high-nutrient wastewater have become chronic stressors on nearshore environments

- 2021 Piney Point emergency release event
 - 10 days of wastewater effluent release (March 30 April 9)
 - 814 million liters of stack water discharged
 - NH₃/NH₄⁺, Ortho-P, Nitrate, Nitrite
 - ~186 metric tons of total nitrogen into Tampa Bay (Beck et al. 2022)
- Reactive hazardous elements and natural radionuclides remain bound to PG (Silva et al. 2022)
- Tampa Bay Coastal Ocean Model
 - Effluent plume prediction

(University of South Florida College of Marine Science Ocean Circulation Lab)

Subsequent Events Following the Piney Point Discharge

Figure 2: Graphical timeline of events in Tampa Bay from March 30th through September 2021 following the release from Piney Point. Inset image shows blooms of filamentous cyanobacteria (Dapis spp.).

Photos: S. Anderson, P. Norby, A. Chappel

Long-Term Monitoring NSF RAPID GRANT

Assess the fate and transformation of nutrients as they move through the ecosystem

Evaluate *regime shifts* of primary producer communities

Biweekly sampling: April 2021-October 2022

Parameters collected:

- YSI EXO2 Sonde
 - Temperature, pH, Salinity, turbidity, DO, FDOM, Chl-a,
- Nutrients
 - TP, OrthoP, PP, TDP, SRP, DOP, TKN, NO₃, NH₄
- Primary producers
 - Phytoplankton, macroalgae, seagrass
- Stable isotopes
 - $δ^{18}$ Op, $δ^{18}$ O_{H2O}, $δ^{13}$ C, $δ^{15}$ N

Piney Point Historical Release Timeline

Photo: Piney Point NGS South Reservoir October 2021 (Chappel)

Is there evidence of phosphogypsum discharge events within the Tampa Bay sediment record?

Piney Point Creek

STUDY AREA

ArcGIS Online (Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community)

Downcore Analyses

 Quantifying depositional history and phosphorus accumulation rates in Bay sediments

Collected February 2022

- Multi-stable isotopes
 - δ^{18} Op, δ^{13} C, δ^{15} N
- Radioisotopes
 - PG is known for high radium levels
 - Excess²¹⁰Pb = Total²¹⁰Pb Supported ²¹⁰Pb
 - ²²⁶Ra = Supported ²¹⁰Pb
- Nutrients
 - Total phosphorous and nitrogen
 - Accumulation rates

Preliminary Downcore Data Excess ²¹⁰Pb Activity

- Not a classic decay curve seen in "undisturbed" systems
- Variable Decay Curve
- Sedimentation
 [inputs/outputs] vary over time
- Upper portion of cores
 [top ~25 cm] show either
 bioturbation or a "dump"
 of material into the
 system

Preliminary Downcore Data Biodiffusive Mixing Model

- Further reinforces the excess ²¹⁰Pb activity measured in the upper portion of cores showing bioturbation or a **"dump"** of homogenized sediment from an episodic event (Dellapenna et al. 1998)
- Ghost Shrimp bioturbation not suspected (Klerks et al. 2007)

Preliminary Downcore Data ²²⁶Ra Activity

- Represents supported ²¹⁰Pb
- Activity in undisturbed systems is relatively low and constant
 - < 1 dpm/g
 - ²²⁶Ra soluble in seawater
 - ²²⁶Ra half-life = 1600 years ٠
 - Activity should be relatively stable over a century

Episodic event(s) bringing radium in excess into the system is plausible 12

Preliminary Downcore Data

Mass Accumulation Rates

 Mass accumulations rates are 3 orders of magnitude larger than other tropical estuaries

(Robbins et al. 2000, Sabaris & Bonotto 2011, Corcho-Alvarado et al. 2014)

 Rate peaks correspond to discharge events from Piney Point

2021, 2011, 2001, and 1970s

• Enhanced bottom resuspension events support imperfect sediment records (Baskaran & Swarzenski 2007)

Preliminary Downcore Data

Total Phosphorus Accumulation

TP accumulation rates have strong peaks corresponding to historical discharge events from Piney Point

TP Concentrations: BHC: 8,680-14,398 μg/g PPC: 130-651 μg/g

TAKEAWAYS & NEXT STEPS

•Tampa Bay is acting as a natural archive

- Sediment cores are recording wastewater discharge events from the Piney Point facility
- Large quantities of radium and total phosphorus are getting deposited and buried in the coastal sediments
- Does this create a potential for legacy phosphorus to impact the Bay's health in the future?
- Next steps: sedimentary algal pigment & δ^{18} O-phosphate analysis
 - Correlation to harmful algal bloom events?
 - Evaluate the source, fate, and transformation of legacy phosphorus

Acknowledgments

- Center for Coastal Solutions Field Technicians
- Morrison Lab Personnel
- UF Land Use and Environmental Institute
- Phlips Phycology Lab
- UF Analytical Research Lab
- Tampa & Sarasota Bay Estuary Programs
- UF Geology Department
- Tampa Bay Manatees

Correspondence: chappela@ufl.edu

RAPID 2130675

References

- Baskaran, M., & Swarzenski, P. W. (2007). Seasonal variations on the residence times and partitioning of short-lived radionuclides (234Th, 7Be and 210Pb) and depositional fluxes of 7Be and 210Pb in Tampa Bay, Florida. *Marine Chemistry*, 104(1-2), 27-42.Klerks et al 2007
- Bausback, Ellen. A Timeline of the Piney Point Wastewater Disaster. Florida Museum. April 22, 2022. [<u>A Timeline of the Piney Point</u> <u>Wastewater Disaster – Thompson Earth Systems Institute (ufl.edu)</u>]
- Beck, M. W., Altieri, A., Angelini, C., Burke, M. C., Chen, J., Chin, D. W., ... & Whalen, J. (2022). Initial estuarine response to inorganic nutrient inputs from a legacy mining facility adjacent to Tampa Bay, Florida. *Marine Pollution Bulletin*, 178, 113598.
- Dellapenna, T. M., Kuehl, S. A., & Schaffner, L. C. (1998). Sea-bed mixing and particle residence times in biologically and physically dominated estuarine systems: a comparison of lower Chesapeake Bay and the York River subestuary. *Estuarine, Coastal and Shelf Science*, 46(6), 777-795.
- Garrett, M., Wolny, J., Truby, E., Heil, C., & Kovach, C. (2011). Harmful algal bloom species and phosphate-processing effluent: Field and laboratory studies. *Marine pollution bulletin*, 62(3), 596-601.
- O'Donnell, Christopher. Piney Point from 1996-present: On the edge of disaster. Tampa Bay Times. April 24, 2021 [<u>Piney Point from 1966-present: On the edge of disaster (tampabay.com)</u>]
- Robbins, J. A., Holmes, C., Halley, R., Bothner, M., Shinn, E., Graney, J., ... & Rudnick, D. (2000). Time-averaged fluxes of lead and fallout radionuclides to sediments in Florida Bay. *Journal of Geophysical Research: Oceans*, 105(C12), 28805-28821.
- Sabaris, T. P. P., & Bonotto, D. M. (2011). Sedimentation rates in Atibaia river basin, São Paulo state, Brazil, using 210Pb as geochronometer. *Applied Radiation and Isotopes*, 69(1), 275-288. Corcho-Alvarado et al. 2014
- Silva, L. F., Oliveira, M. L., Crissien, T. J., Santosh, M., Bolivar, J., Shao, L., ... & Schindler, M. (2022). A review on the environmental impact of phosphogypsum and potential health impacts through the release of nanoparticles. *Chemosphere*, 286, 131513.
- Tampa Bay Estuary Program. Piney Point Monitoring Dashboard. [PINEY POINT ENVIRONMENTAL MONITORING DASHBOARD (tbep.org)]
- University of South Florida College of Marine Science Ocean Circulation Lab. Tampa Bay Coastal Ocean Model. Piney Point Effluent Evolution. [Model Simulated Plume of Wastewater Discharged from Piney Point in Tampa Bay (usf.edu)]
- Zielinski, R. A., Al-Hwaiti, M. S., Budahn, J. R., & Ranville, J. F. (2011). Radionuclides, trace elements, and radium residence in

Preliminary Downcore Data Total Nitrogen Accumulation

- More TN accumulation compared to TP accumulation in the PPC core
- Peaks in the top 5 cm of both cores correspond to the 2021 discharge event
- Other discharge-related peaks:
 - 2011, 2001, 1990s

Preliminary Data April – July 2021

Increases in orthophosphate were seen within the Bay with Piney Point and Bishop Harbor showing the greatest response

PP effluent orthophosphate concentrations: 140 mg L⁻¹

Morrison et al. In Prep

Preliminary Data

April –July 2021

Phytoplankton Community Composition

- Effluent was dominated by chlorophytes
- Localized diatom growth was seen soon after discharge
- *Karenia brevis* has the highest biomass in mid-June
 - Harmful algal bloom
- *Prorocentrum* were seen in high abundance
 - Also seen after the 2003 discharge into Bishop Harbor (Garrett et al 2011)

Morrison et al. In Prep

Collaborative Monitoring Efforts

To capture the effects of the release

- Tampa Bay Estuary Program (TBEP) led initial field efforts to ensure Bay-wide coverage of potential impact locations
- Many local institutions and agencies involved
- Data Collected:
 - Suite of water quality parameters
 - Macroalgae
 - Phytoplankton
 - Seagrass
 - Hydrodynamic data
- Monitoring dashboard created to aid in data sharing and analysis

PINEY POINT ENVIRONMENTAL MONITORING DASHBOARD (tbep.org)

SITE MAP

UF Center for Coastal Solutions

- Lower Tampa Bay sites
 - Piney Point
 - Bishop Harbor
 - Joe Bay
- Reference site
 - St Joseph Sound
- Bi-weekly sampling
 - April 2021 October 2022
- Sediment coring locations
 - Piney Point
 - Bishop Harbor
 - October 2021 and February 2022

Sediment Coring Sites

PPC Coring Site

BHC Coring Site

The long-term effect of iron amendments on sedimentary phosphorus retention

Lena Heinrich, Michael Hupfer Phosphorus week

Raleigh, 4 November 2022

Water Research 189 (2021) 116609

Water Research

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/watres

Transformation of redox-sensitive to redox-stable iron-bound phosphorus in anoxic lake sediments under laboratory conditions

Lena Heinrich^{a,b,*}, Matthias Rothe^c, Burga Braun^d, Michael Hupfer^a

^a Department of Chemical Analytics and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany

^bDepartment of Urban Water Management, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany

^c German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany

^d Department of Environmental Microbiology, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany

Journal of Soils and Sediments https://doi.org/10.1007/s11368-021-03099-3

SEDIMENTS, SEC 2 • PHYSICAL AND BIOGEOCHEMICAL PROCESSES • RESEARCH ARTICLE

Sulphate reduction determines the long-term effect of iron amendments on phosphorus retention in lake sediments

Lena Heinrich^{1,2} · Jan Dietel³ · Michael Hupfer¹

Received: 9 June 2021 / Accepted: 24 October 2021 © The Author(s) 2021

Agenda

Background – In-lake P precipitation by Fe

Low redox conditions limit the effectiveness of Fe dosing for long-term P retention?

Methods

2Gen

- **Fe dosing can initiate the formation of the precursor.**
- **Fe-P can be immobilized within anoxic lake stratification periods.**

Conclusion - Long-term P retention by Fe under anoxic conditions

Water - oxic

What happens outside the laboratory under more realistic conditions?

Field study - Sites

Groß Glienicker See		<image/>	
80ies	eutrophic	90ies	eutrophic
1992	Fe dosing 500 g Fe/m ² as Fe(OH) ₃ and FeCl ₃ + other management measures	2000	Fe dosing 150 g Fe/m ² as Fe(OH) ₃ + other management measures
		2002	Short term improvement
2010	Long term improvement	2018	Long term improvement

Field scale evidences – Sediment stratigraphy

Field scale evidences – Element correlations & Fe minerals

Conclusion – S competition

One-box model – S fluxes at the sediment water interface

Method: Gächter and Imboden, J. Wiley & Sons, 1985. Figure: Heinrich et al. 2022. J Soils Sediments 22(1), 316-333.
Conclusion – S competition

Management implications – Long-term P retention after Fe dosing

Low redox conditions limit the effectiveness of Fe dosing for long-term P retention?

- Anoxic conditions and microbial Fe reduction NO PROBLEM
- Sulphidic conditions due to intensive sulphate reduction PROBLEM (
- I More Fe needs to be dosed to account for the competition by S
- Fe dosage calculation

Fe dosage = Fe consumption by P + Fe consumption by OM + **Fe consumption by S**

Fe consumption by S = sulphate reduction/year · 0.66 Fe/S in pyrite · years

Management implications – Interplay of dosed Fe and sulphate reduction

Challenge – Does Fe dosing affect sulphate reduction?

- Stimulation? e.g. by preventing product inhibition of sulphate reduction by providing a sink for the toxic sulphide
- Decline? e.g. because P binding by Fe decreases primary production and availability of organic matter as electron donor
- Possibly

Suggested workflow

Management implications – Controlling sulphate reduction

Could be more sustainable and cost-effective than increasing Fe dosages

- Plötzensee: 50% sulphate reduction □ Fe dosage -44%
- Groß Glienicker See: 50% sulphate reduction \Box Fe dosage -20%
- How to control sulphate reduction?
- **Research perspective: Organic matter and/or sulphate availability!**

Take Home Message

on

	Low microbial Fe reduction	High microbial Fe reduction	
Lo w su lp ha te re du cti on	Fe(oxi)hydroxides bind P on the long term	Vivianite binds P on the long term.	Fe do si ng wo rk s we II
Hi gh su lp ha te re du cti	Sulphide releases P from Fe, immobilizes Fe avoid prevents long-term P retention.		Ad dit io na l pl an ni ng !

Thanks for your attention!

Research Funding: German Research Foundation - GRK 2032/2

Prof. Dr. Michael Hupfer

Prof. Dr. Stefan Norra

Field scale evidences – Sulphide production

Field scale evidences – Sulphate reduction

IGB

Origin of sulphate - Groundwater

Sector IGB

Interactions between Fe dosing, P retention and sulphate reduction

🗲 IGB

Re-calculated Fe dosages

Evaluating the diversity of metal cations in microbial polyphosphate granules and their role in enhanced biological phosphorus removal processes at wastewater treatment facilities

Jessica Deaver, PhD

Postdoc, Call Lab Department of Civil, Construction, and Environmental Engineering Sustainable Phosphorus Summit 4 November 2022

Anthropogenic P Cycle

Bunce et al. (2018). Front. Environ. Sci. 6:8.

Enhanced Biological Phosphorus Removal (EBPR)

Polyphosphate Accumulating Organisms

Objectives

Results of Stakeholder Survey

Source of carbon- sewage fermentation, side stream, acetic acid addition

Variable configurations

~50% report problems with unstable biological phosphorus removal

>Seasons/temperature

SRT 2-20 days

Average flow rates 2-20 MGD

Mostly residential + commercial influent

Chemical precipitation

Studying EBPR

Problems: seasonal instability, changes in P removal when influent changes due to storm water, reduced flow, etc.

Question: Does polyphosphate granule composition change under different operating conditions?

Knowledge Gaps

- SEM/EDS* image of activated sludge sample from a lab scale EBPR reactor
- Fed synthetic wastewater with known composition

Li et al. (2019). Environ. Sci. Technol. 53, 1536-1544.

*SEM/EDS = Scanning Electron Microscopy/Energy **Dispersive X-ray Spectroscopy**

Scanning Transmission Electron Microscopy (STEM)/Energy Dispersive X-ray Spectroscopy (EDS)

Polyphosphate granules

Microscopy Methods

Microscopy

P-release tests

Objective: Measure phosphorus and corresponding metal release of different sludges; compare across facilities operating under different conditions

Constant pH = 7 Constant temp = 22°C Measure soluble phosphorus and metals released every 20 minutes

Soluble Phosphorus Release

Soluble ortho-phosphate as P release

Soluble Metals Release

Soluble metal concentrations as a function of soluble ortho-P concentrations

Future Work

- Phosphorus release tests in conjunction with STEM/EDS from several partner facilities using variable operating conditions
- Goal is to understand the influence of metal cation usage on biological P storage
- Eventually, sample over time to capture an instability event

Conclusions

Bunce et al. (2018). Front. Environ. Sci. 6:8.

Acknowledgements

Call Research Group

Dr. Doug Call

Jenny Ding, Julianne Buggs, Christopher Good

Analytical Instruments Facility

Dr. Aaron Bell Dr. Christopher Winkler Dr. Jin Nakashima

STEPS Center Collaborators

P Analytics Team – Dr. Jacob Jones, Dr. Paul Westerhoff, and others! *Theme 3 Collaborators-* Dr. Anna Marshall, Dr. Khara Grieger

EXTRA SLIDES

Soluble Metal Concentrations

K _{sp} Va	lues
--------------------	------

	Name	Formula	K _{sp}
Low solubility	Calcium phosphate	Ca ₃ (PO ₄) ₂	1×10 ⁻²⁶
	Magnesium phosphate	$Mg_{3}(PO_{4})_{2}$	1×10 ⁻²⁵
	Iron (III) phosphate	FePO ₄	1.3×10 ⁻²²
	Aluminum phosphate	AIPO ₄	6.3×10 ⁻¹⁹
	Magnesium ammonium phosphate	MgNH ₄ PO ₄	2.5×10 ⁻¹³
	Calcium hydrogen phosphate	CaHPO ₄	1×10^{-7}
+	Sodium Phosphate	Na ₃ PO ₄	2.24
Soluble	Potassium Phosphate	K ₃ PO ₄	8730

Polyphosphate Accumulating Organisms

Anaerobic (no oxygen)

Polyphosphate Accumulating Organisms

Other PAOs

Iron enhanced biowaste to recover lost phosphate and its potential application as a slow-release fertilizer for agriculture

Chandra Tummala

PhD candidate Wayne State University

Dr. Sanjay Mohanty

Assistant professor, University of California Los Angeles

Dr. Timothy Dittrich

Assistant professor, Wayne State University

Introduction

- Phosphate loads from non-point and point sources discharged into freshwater reason for the development of algal bloom growth
- **Sources:** Agriculture runoff, industrial effluents, sewage discharge
- Phosphate limit in freshwater streams 0.1 ppm (EPA)
- Health effects:
- Respiratory and neurological problems
- Can sometimes lead to death

Elevated phosphate levels caused algal blooms

Toledo, Ohio

Algal blooms growth in Lake Erie due phosphate loads from agriculture runoff

- **Don't drink water** order passed because of the algal bloom's growth in freshwater source
- Left 400000 people without drinking water for three days

Mulberry, Florida

- **215 million gallons** of wastewater was discharged into freshwater aquifer
- Excess of phosphates in the wastewater
- Can be potential reason behind the harmful algal blooms growth now

Source: https://glbusinessnetwork.com/harmful-algal-blooms-lake-erie-2/

Mosaic- New Wales facility, Florida Source: Google maps(coordinates :27.815674, -82.033218)

Nutshell waste can be used as a solid support

- United States produces 40% of world's pistachio and 31% of world's walnuts – 2nd largest producer of both nuts around the world
- Pistachio shell weight accounts up to 45% total weight of pistachio
- Walnut shell accounts up to 55-60% in the total weight of walnut
- On an average **148968 tonnes (approx. 328million pounds)** of pistachio shells and **325017 tonnes** (716 million pounds) of walnut shells are produced

Hypothesis

nutshells production

Iron coated waste

Preparation of Iron coated shells

Washed them with DI water and dried them at 50°C for 24 hours

Nutshells were added to 1M FeCl₃ (solid : liquid = 1:3)

Rotated at 15 rpm for 4 hours at 50 °C

Heated to 205°C

Stored in polyethylene bag

Washed iron nutshells with DI water(with approx. 7g/l) and dried at 50°C

Cooled to room temperature

Iron coat confirmation using the SEM and EDS analysis

Hematite mineral was formed on surface of waste nutshells due to the iron coat

Name	Mineral Name	Formula	System	Molecular weight	Density	Name	Mineral Name	Formula	System	Molecular weight	Density
Iron hydrogen oxide	Iron hydroxide(III) hematite	Fe1.98H0.06O3	Rhombohedral	158.63	5.229	Iron hydroxide(III)	Iron hydroxide(III) hematite	Fe1.67HO0.99O3	Rhombohedral	142.26	4.672

Amount iron coated on the waste nutshells

- EPA total digestion method 3050B Iron was completely dissolved to find out total Iron coated on the shells
- Iron coated on pistachio shells = 19.6±0.8 mg/g
- Iron coated on walnut shells = **21.2±1.4 mg/g**

Batch experiments

0.2g of each sorbent added to 40ml of phosphate solution

Centrifuge tubes rotated at 5 rpm (Inclination 120⁰)

Samples were collected at regular time intervals(0 minutes, 10minutes, 20 minutes.... 2880 minutes)

Samples are digested in an autoclave at 121°C for about 35 minutes

Enhancement of the waste nutshell phosphate adsorption capacity with the Iron coat

- Pistachio shells and walnut shells didn't remove any phosphate from the aqueous solution
- Iron coat on the waste nutshells enhanced the adsorption capabilities of the waste nutshells

Time taken to reach equilibrium varied with the phosphate concentration

Both the iron coated waste nutshells followed pseudo second order kinetics

- Pseudo-kinetic first order equation
- Pseudo-kinetic second order equation

$$:Q_{t} = Q_{e} - e^{-K_{1}t}$$
$$:Q_{t} = \frac{K_{2}Q_{e}^{2}t}{1 + K_{2}Q_{e}t}$$

Freundlich isotherms model fits better based on the R-squared value

Adsorbents		Freundlich		Langmuir			
	\mathbb{R}^2	k _F	1/n	\mathbb{R}^2	Q _m	k _L	
Pistachio shells	0.97	3.77	0.26	0.93	9.79	0.57	
Walnut shells	0.97	3.33	0.30	0.95	10.2	0.40 14	

Sequential phosphate release experiments to demonstrate slow release

Mehlich 3 solution: 0.2 M glacial acetic acid, 0.25 M Ammonium nitrate, 0.015 M Ammonium fluoride, 0.013 M Nitric acid, 0.001M EDTA

• More than 90 % of phosphate attached to the iron coated walnut shells was released slowly over a 5-day period

Nutrients released from iron coated adsorbents can enhance the growth in the plants

- Mean shoot length increased by 48% when phosphate enhanced iron coated pistachio shells were used and 43% increase was so when phosphate enhanced walnut shells used.
- Results were statistically significant with a P<0.01(ANNOVA analysis). No significant difference was observed in the root length

Conclusion

- Adsorption experiments showed that iron coated nutshells successfully adsorbed phosphates from the water system
- Adsorption process is spontaneous and followed pseudo second order kinetics
- Iron coated nutshells can be potential low-cost adsorption media to filter phosphate from contaminated waters
- Large scale studies are planned to investigate to P-release kinetics and the applications for these materials as slow-release fertilizers.

References

- Boujelben, N., Bouzid, J., Elouear, Z., Feki, M., Jamoussi, F., & Montiel, A. (2008). Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents. *Journal of Hazardous Materials*, 151(1), 103–110. https://doi.org/10.1016/j.jhazmat.2007.05.057
- Tummala, C.M., & Dittrich, T.M., Novel low-cost adsorbents for phosphate removal from freshwaters, ACS Fall 2021 Virtual Meeting, August 22-26, 2021
- Tummala, C.M., Baskaran, M., & Dittrich, T.M., Novel Fe and Mn oxide catchbasin filter media to improve the quality of runoff water and its application to extract isotopic tracers, AGU Fall meeting(online), December 1-17, 2020
- Tummala, C.M., Baskaran, M., & Dittrich, T.M., MnO, coated fabric: Usage as a phosphate sorbent filter media for stormwater treatment and isotopic tracer studies, ACS Spring 2021 Virtual Meeting, April 5-30, 2021
- Dittrich, T. M., Geohring, L. D., Walter, M. T., & Steenhuis, T. S. (2003). Revisiting buffer strip design standards for removing dissolved and particulate phosphorus. In *Total Maximum Daily Load (TMDL) Environmental Regulations II* (p. 1). American Society of Agricultural and Biological Engineers.
- Yao, Y., Gao, B., Chen, J., & Yang, L. (2013). Engineered biochar reclaiming phosphate from aqueous solutions: Mechanisms and potential application as a slow-release fertilizer. *Environmental Science and Technology*, 47(15), 8700–8708. <u>https://doi.org/10.1021/es4012977</u>
- Eisenreich, S., Bannerman, R., & Armstrong, D. J. E. I. (1975). A simplified phosphorus analysis technique. 9(1), 43-53.
- Mezenner, N. Y., & Bensmaili, A. (2009). Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste. *Chemical Engineering Journal*, 147(2-3), 87-96

Thank you

COMPETITION FOR PHOSPHORUS FROM THE BATTERY INDUSTRY

Linda Gaines

Sustainable Phosphorus Summit

November 4, 2022

Transportation Systems Analyst Energy Systems and Infrastructure Analysis Division Argonne National Laboratory Igaines@anl.gov

online.com/global-pom-application

2

BATTERIES WILL REQUIRE HUGE QUANTITIES OF MATERIAL

Demand stems from commitment to rapid displacement of fossil fuels

- Existing supply chains are inadequate and unstable
 - In a finite system, there is no such thing as sustainable growth
 - Disruptions happen from pandemics and war
- Alternative materials, technologies, and mobility options should be explored
- Use of domestic materials could reduce conflict from competition for materials
- Recycling can make a major contribution after demand growth slows

Argonne National Laboratory is a

IERGY U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

LIBs placed on the Global Market (Tonnes)

WHAT'S IN A LITHIUM-ION BATTERY? Cathode [Li(Ni_xMn_yCo_z)O₂] is key to battery performance

US DEPENDS ON COBALT AND NICKEL IMPORTS

How many years could US make all cars as EVs with our reserves?

DOE SEEKS TO REDUCE CO AND NI CONTENT

Battery Technologies - Key R&D Emphasis

Significantly reduce battery cost Reduce or eliminate dependence on critical minerals Support domestic battery and materials supply chain

1. Accelerate and Scale-Up lithium Metal Battery R&D

 Reduce EV battery cell cost by 50% to \$60/kWh by 2030 to achieve EV cost parity with ICE vehicles

- Develop and Scale Up No Cobalt, No Nickel Cathodes
- Develop and Scale Up Silicon-based anode

3. Expand Lithium Battery Recycling R&D

- Establish a lithium battery recycling ecosystem to recover
 www.airmeet.com is sharing your screen. Stop sharing
 Hide as and re-introduce 90% of
 - key materials into the battery supply chain by 2030

9

POSSIBILITES FOR NO COBALT, NO NICKEL CATHODES

- Disordered structures
- Rock salts
- Manganese
- Li-S
- Phosphates (e.g., LFP [Lithium Iron Phosphate])

"There is lots of work being done, lots of challenges. So, there will be no single winner."

David Howell, MSPC Supply Chain Symposium

WHY LFP IS INTERESTING

- It could be made with all domestic materials
 - No worry about sourcing Ni and Co
- It is cheaper and safer than NMC
- Fewer GHG to produce
- New designs like BYD Blade compensate for lower energy density
 - Can fully charge/discharge
 - -400-mile range might not be needed
- It can be recycled directly at low costFirst Phosphate will produce in NA

PHOSPHORUS COULD BE IMPORTANT FOR BATTERIES

US does have domestic phosphate rock (and iron)

- EU classifies P as critical, with reserves but minimal production in Finland
- US also produces pure phosphoric acid
 - Precursor for LFP

LIS. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

- Could develop complete domestic supply chain
- Major use is agricultural
- Major use for batteries could eventually impact fertilizer market
- There is potential to recover phosphorus lost in agricultural use
 - There would be ecological benefits
 - Research would be needed on methods

Country	Mine Production 2021	Reserves		
United States	22,000	1,000,000		
China	85,000	3,200,000		
Morocco	38,000	50,000,000		
Russia	14,000	600,000		
World Total	220,000	71,000,000		
USGS Ph	osphate Rock Data (*	1000 metric tons)		

Contained phosphorus is about a 10X lower.

PHOSPORUS FLOWS IN US ECONOMY 2017

b) 2017 US P Flows (billion kg P)

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. **Algren, M.**, T. T. Burke, Z. U. M. Chowdhury, C. Costello, and A.E. Landis. *Quantifying phosphorus flows in the United States togidentify the major contributors to P loss and opportunities for improvement*. In journal peer review.

Argonne 🧲

HOW IS LFP MADE?

US has capacity to make all of the intermediate products

10

BATTERY USAGE MAY IMPACT PHOSPHORUS MARKET

Global demand could rival industrial uses within 10 years

- By 2050, LFP batteries could require >3 Mt/y of P
 - This estimate is highly uncertain
 - About 30% could be available from recycling
 - Cumulative demand could be over 35 Mt
- About 30 Mt P (223 Mt rock) was mined in 2020
 - Quantity could double by 2050
 - Resources are large but finite
 - Industrial grade production is under 1 Mt/y
- Competition most likely for industrial market

*"Reply to: Concerns about global phosphorus demand for LiFePO*₄ *batteries, "*C. Xu, Q. Dai, L. Gaines, M. Hu, A. Tukker, B. Steubing, Communications Materials, 2022

MUCH P IS LOST TO THE ENVIRONMENT

More could be captured

- Lawn/garden runoff
- Septic system drainage
- Food waste
- Wastewater
- Phosphogypsum
- Animal processing
- Manure
- Cropland runoff

Fate of P in US

Algren, M., T. T. Burke, Z. U. M. Chowdhury, C. Costello, and A.E. Landis. *Quantifying phosphorus flows in the United States to identify the major contributors to P loss and opportunities for improvement.* In journal peer review.

PHOSPHORUS RECOVERY CAN MODERATE DEMAND GROWTH Would also benefit environment by removal from waste stream

- Increased P recovery from wastewater would limit need for mining
 - Sewerage connections expected to increase by 4 billion globally by 2050
 - Connections with urine separation could double P recycled to 1.3 Mt/y
 - Vivianite (3 Mt/y), with high Fe content, could be input to LFP
- Sustainability could benefit from reduction in the P load to fresh waters (~5Mt/y)
- Potential synergy if agricultural P can be recycled to battery-grade raw materials or P from batteries for agricultural purposes
- P is not as critical a raw material as Li, Co, or Ni, especially if it can be recycled.

Thank you! US Department of Energy, Vehicle Technologies Office

This presentation has been created by Argonne National Laboratory, a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC, under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.