

Chair of Soil Science

Elton E. Novais Alves

D.Sc. Soils and Plant Nutrition Postdoc Chair of Soil Science – UM6P Elton.Novais@um6p.ma

Four Pillars - CSS

Environmental biogeochemistry

- Understand the biogeochemical cycling Nutrients & Contaminants soil-plant-human
- Use state-of-the-art techniques and modeling

 mechanisms driving the fate and behavior
- Design better technologies and improve soils management

• Soil health and climate change

- Soil biodiversity + conservation + management = causes/solutions of climate change
- Management practices that will improve C sequestration in the soil, fight climate change, and improve soil health
- Design the way sustainable agricultural systems should look, putting all the different challenges into perspective

• Fertilizer technology

- Nutrients in the soil-plant system and having specific fertilizer solutions for main soil-plant systems.
- Embedding technology in the fertilizer granules that will improve nutrient use efficiency and plant productivity

Soil Security

- Support how soils are the foundation of our green transition, particularly in Africa
- AU-EU R&D Partnership under the leadership of Prof. Daniel Nahon
- Right policies to ensure soils are safe and secured Union vision for the green transition in Africa, and to make UM6P the first African Lighthouse

AS93 Project

Phosphorus fate, behavior, and bioavailability in long-term phosphate fertilizer and soil management trials in the Brazilian Cerrado

Research Approach

- General goal: To evaluate the long-term changes in soil phosphorus chemistry and the fate of added P fertilizer under conventional and more sustainable agricultural management practices
- **Two experiments**: NT vs CT (tillage system), TSP vs PR (source), F vs B (localization) Brazilian Cerrado (EMBRAPA)
 - 17 yrs P supply and 8 yrs cropped without P Legacy P
 - 20 yrs cropped soil with 3 rates of P (0, 50, 100 kg ha⁻¹ yr⁻¹) P Balance
- Material & Methods
 - Wet chemistry 🗸
 - Phosphorus fractionation to assess labile, mod-labile, and non-labile forms
 - Synchrotron-based spectroscopy (XANES and XRF)
 - P K-edge XANES spectroscopy to assess the molecular composition of phosphorus
 - To assess whether the amount of organic P has increased after long-term fertilization
 - To quantify which forms of P are depleted by the continuous cultivation
 - Microbiological and enzymes analysis \checkmark
 - To assess the microbiological and enzymes activity changes
 - ³¹P-NMR chemistry

• To assess the organic P changes after long-term fertilization (to be carried out)

tainable Phosphorus Summit November 2022, Raleigh - NC

Bioavailability of legacy phosphorus in a long-term cultivated Brazilian Cerrado Oxisol under different tillage systems and fertilization management

Elton Eduardo Novais Alves

Lenir Fátima Gotz

Paulo Sergio Pavinato

Luis Carlos Colocho Hurtarte

Adila Natália França de Almeida D.Sc. Soils and Plant Nutrition Thamires Dutra Pinheiro Postdoc Chair of Soil Science – UM6P Rafael de Souza Nunes <u>Elton.Novais@um6p.ma</u> +212 07 01 31 44 95 Leonardus Vergütz

Overview

- Brazilian agriculture:
 - Brazil is the world's fourth-largest food producer
 - Cerrado (Brazilian Savanna) represents 60% of Brazilian agricultural production
 - Cerrado has highly weathered soils and Fe- and Al-(hydr)oxides clays P fixation!
- Soil fertilization and legacy P
 - Phosphate rock contains calcium-phosphorus species (e.g., hydroxyapatite P-HAp) that are a source of P to crops after their solubilization and diffusion in the soil
 - However, P can be fixed on Fe and Al clay surfaces and become unavailable to plants
 - This process decreases P fertilization efficiency
 - The continuous fertilization result in the buildup of P in the soil (known as legacy P), which might be available to future crops
- Synchrotron-based
 - P K-edge $\mu XANES$ To assess the P species and understand the mechanisms controlling the fate of P from the fertilizers in tropical soils

Objectives

General

• To evaluate the long-term changes in soil phosphorus chemistry and the fate of added P fertilizer under conventional and more sustainable agricultural management practices in tropical croplands

• Specific objectives

- To assess the bioavailability of legacy P in a long-term experiment testing soil management systems, P sources, and methods of application
- To assess P speciation in a Brazilian Cerrado Oxisol, under a long-term field experiment using a synchrotron-based technique (XANES)

Material & Methods

- 25 yrs field experiment, Planaltina-DF, Brazil:
 - NT vs CT; TSP vs PR; F vs B; cropped with maize
 - Oxisol 63% kaolinite 20% gibbsite 11% hematite in the clay fraction
 - Sampling 2011: after 17 yrs P supply (35 kg ha⁻¹ yr⁻¹ of P)
 - Sampling 2019: after 8 yrs cultivated without P
- Wet chemistry
 - Phosphorus fractionation (Gatiboni & Condron, 2021) to assess labile (M3), mod-labile (HCl 1 M and NaOH 0.5M), and non-labile forms (occluded)
- Synchrotron-based spectroscopy (XANES and XRF)
 - P K-edge XANES spectroscopy to assess the molecular composition of phosphorus
 - To assess whether the amount of organic P has increased after long-term fertilization
 - To quantify which forms of P are depleted by the continuous cultivation

Results

- After 8 years without fertilization, the total P content in the topsoil decreased under NT and CT (-197 and -123 mg kg⁻¹)
- NT increased the labile P in 2011 (125 vs 34 mg kg⁻¹, NT vs CT) and in 2019 (27 vs 14 mg kg⁻¹)
- In the NT, the mod-labile and labile P fractions decreased (-96 and -80 mg kg⁻¹), and in the CT non-labile fraction decreased (-59 mg kg⁻¹)
- P-Fe and P-Al are the main species across all treatments and increased over time (77% in 2011 and 88% in 2019)
- P-Ca and organic-P species were depleted under CT but were still found in NT after 8 years without fertilization

Conclusions

- Fertilizer application is mandatory or reduction of -50 to 85% of labile P (lower crop yield)
- No-tillage P rock kept better levels of labile P

 higher P buffer capacity for the crops
- •Non-labile fraction decreased from 2011 to 2019 in the topsoil, meaning the legacy P can be accessed by the crops
 build legacy P, but crop yield decreases
- P-Ca (fertilizer) transformed in P-Fe and P-Al (less labile P)
- The NT is better than CT system
 Soil health and higher labile P (crop yield)

Acknowledgment

• 150 major rivers & streams

Sustainable Phosphorus Management across Systems and Spatial Scales

Tan Zou, Xin Zhang, Eric A. Davidson

Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, USA

West Virginia

Washington, DC

Pennsylvania

Baltimore, M

1 210

Delaware

Research background Chesapeake Bay watershed

- Covers 64,000 square miles
- Supports more than 18 million people, 348 species of finfish and 173 species of shellfish

Motivations

1. Two phosphorus management gaps

1. Phosphorus (P) management – limited progress

Total phosphorus trends (Ibs/acre; 2009—2018) at nontidal monitoring stations

- Reductions in total P at 44% of stations.
- Increases in total P at 32% of stations.
- No trend in total P at 24% of stations.

Motivations

1. Two phosphorus management gaps

- 1. Phosphorus (P) management limited progress
- 2. Management performances varying by region and source

Ontario

OH

WV

Star NY

NJ

DE

PA

MD

DC

VA

NC

Motivations

1. Two phosphorus management gaps

- 1. Phosphorus (P) management limited progress
- 2. Management performances varying by region and source

3. Lack of understanding of socioeconomic drivers for nutrient use

Methods

Methods

Data sources

- Time scale: 1985-2019
- Data sources: Chesapeake Assessment Scenario Tool (CAST), and literature
- P budget database: study nutrient use patterns and management performances by county and year

System scales

Result 1: Importance of P management beyond crop farms P loss potential at P loss potential \checkmark beyond crop farms crop farms System scales Landscape Food system Animal-crop Ecosystem system Cropping system PROCESS MARKET 177 Zou et al. The CAFE

Result 1: Importance of P management beyond crop farms

PUE beyond crop farms was decreasing

Phosphorus use efficiency (PUE) = productive outputs/inputs

Strategies to improve PUE

- 1. Improving subsystems' PUEs
- 2. Improving the interconnection between subsystems

Result 1: Importance of P management beyond crop farms

P surplus beyond crop farms was increasing

Phosphorus surplus (P surplus) = inputs - productive outputs

Result 1: Importance of P management beyond crop farms

P surplus beyond crop farms was larger than P surplus at crop farms

Cropping system P surplus = 16% ecosystem P surplus

In the watershed, 96% counties has P surplus beyond crop farms larger than P surplus at crop farms.

Using between-system surplus change to identify management priorities

Between-system surplus change =higher system surplus – lower system surplus

System with the largest surplus increase

- Cropping system Cropping to Animal-crop Animal-crop to Food
- Food to Ecosystem

2019 P management priories by county

- 4 (2%) at Cropping system
- 22 (11%) at Animal-crop system
- 81 (41%) at Food system
- 90 (46%) at Ecosystem

Result 3: Large potential to meet P demand by recycling waste

Result 3: Large potential to meet P demand by recycling waste

P difference between

unrecycled waste and inorganic fertilizer input in 2019

Unit: kgP 200,000 and above 100,000 0 -100,000 -100,000 -200,000 and below Breen counties : unrecycled waste > cropland inorganic fertilizer input unrecycled waste < cropland inorganic fertilizer input

- Waste recycle potential = unrecycled food and human waste cropland inorganic fertilizer input
- Recycle potentials vary among counties.

MY SAL

NC

Result 3: Large potential to meet P demand by recycling waste

P difference between

unrecycled waste and inorganic fertilizer input in 2019

- Waste recycle potential = unrecycled food and human waste cropland inorganic fertilizer input
- Recycle potentials vary among counties.
- Transporting P from green counties to red counties to improve P recycling.

Result 4: Potential drivers for P use

Result 4: Potential drivers for nutrient use

Ontario

Result 4: Potential drivers for nutrient use

counties

correlation

Ontario

Result 4: Potential drivers for nutrient use

Cropping system
 Cropping to Animal-crop
 Animal-crop to Food
 Food to Ecosystem
 Positive correlation
 Negative correlation

Initial conclusions

- Lower system PUE and upper system PUE share similar trends
- System's NUE and PUE share similar trends
Take home messages

- 1. It is important to improve P management beyond crop farms.
- 2. P management gaps and priorities vary by region.
- 3. Considering P management across systems and spatial scales can serve to improve overall efficiencies
 - 1. Recycling food and human wastes to replace some inorganic fertilizer inputs to improve cropping system PUE
 - 2. Finding healthy and sustainable diets to improve all systems' PUE
- 4. Various socioeconomic factors affect P surplus, loss, and use efficiency.

Email:

Tan Zou, <u>tan.zou@umces.edu</u> Xin Zhang, <u>xin.zhang@umces.edu</u> Eric A. Davidson, <u>edavidson@umces.edu</u>

We would like to thank those who have contributed to our work: Graham K. MacDonald (McGill University) Robert Sabo (US Environmental Protection Agency) Dong Liang (Chesapeake Biological Laboratory , Center for Environmental Science, University of Maryland) Bill Dennison (Science Applications, University of Maryland Center for Environmental Science) Olivia Devereux

Quantifying and Mapping P-Flows in the Economy of Ontario, Canada

Edgar Martín Hernández, Jorge A. Garcia, Tian Zhao, Samantha Gangapersad, Roy Brouwer, Céline Vaneeckhaute, and Sidney Omelon

November 2022

Edgar Martín Hernández © November 2022

- Nutrient pollution challenge
- Phosphorus flows in the Economy of Ontario

uropean Space Agency/Flickr

- Food system
- Industrial sector
- Potential of phosphorus recovery

Nutrient pollution challenge

European Space Agency/Flickr

Nutrient pollution is one of the major worldwide water quality problems

SUSTAINABLE G ALS

2 RESPONSIBLE CONSUMPTION AND PRODUCTION

Nutrient pollution is a major environmental threat

Algal blooms are a global and recurring environmental problem

Lake Erie, United States & Canada

NASA, 2017, https://earthobservatory.nasa.gov/images/91038/lakeerie-abloom

NASA, 2019, https://earthobservatory.nasa.gov/images/145453/eerieblooms-in-lake-erie

Geopolitical concerns: Phosphorus is one of the most sensitive elements to depletion

Phosphorus flows in the Economy of Ontario

uropean Space Agency/Flickr

Objectives

Map P flows in the province of Ontario

Highlight recovery options

Objectives

Map P flows in the province of Ontario

Highlight recovery options

Recovery Options across the Phosphorus Cycle

Phosphorus Source (Recovery Options)

Runoff and Surface Water Urine and sewage from urban cities

Mining: Process and extraction loss, spillages, and wastages

Industries: Fertilizer industry, food processing loss, trade loss, storage loss, semiconductor industry, poultry, livestock, wastewater, dairy manure, phosphoric acid processing, etc.

Report

Project Lead:

Mapping Phosphorus Flows in the Ontario Economy

Exploring Nutrient Recovery and Reuse Opportunites in a Provincial Context This project was undertaken with the financial support of:

Ce projet a été réalisé avec l'appui financier de:

Environment and Climate Change Canada

Environnement et Changement climatique Canada

Participants:

3 P flows networks:

P flows

- Food system
- Chemistry & steel industry
- Forestry industry

P flows in Ontario

- 3 P flows networks:
- Food system
- Chemistry & steel industry
- Forestry industry

Phosphorus flows in the Economy of Ontario

European Space Agency/Flickr

Food system

Food system flows

Provincial flows

Spatial distribution:

- Overall flows
- Livestock flows
- Crop flows

Provincial flows

Inflows Outflows 1e3 1e3 - 9 - 9 8 8 W Phosphorus flow (metric ton) Phosphorus flow (metric ton) Spatial distribution: • Overall flows • Livestock flows • Crop flows 2 2 - 1 - 1 0

Fertilizer and manure application

0.0

2019

- Overall flows
- Livestock flows
- Crop flows

Provincial flows

Phosphorus legacy

Wastewater flows

Releases and disposals

- Provincial flows
- Spatial distribution

221320 Sewage treatment facilities
221112 Fossil-fuel electric power generation
221113 Nuclear electric power generation
221119 Other electric power generation
221330 Steam and air-conditioning supply

Wastewater flows

Releases and disposals

- Provincial flows
- Spatial distribution

Phosphorus flows in the Economy of Ontario

European Space Agency/Flickr

Industrial sector

Overview

Industrial flows (t/a)

Provincial flows Spatial distribution

22200 P chemical imports	22200 P chemicals	P chemical exports 1399
		Assumed P-chemical use 5740
200 Steel scrap		Slag by-product 6700
8400 Iron ore and coal imports	11000 Mineral resources	ndustry 7760 Steel 860
2600 Mineral interprovincial imports		Transport, chemical and other industry 3800
210 Wood interprovincial imports	Wood product fabrication 1570	Wood fabricated products 1550
2255 Wood harvested in Ontario	2465 Primary wood products Plup and	paper manufacturing 630 Plup and paper products 250
1830 Grain and oilseed milling	2370 Milled grain products	Domestic consumption of grain products 2280
660 Grain imports 3100 Dairy products manufacturing	3110 Dairy products	Milled grain exports 90 Domestic consumption of dairy products 2940
50 Dairy products imports		Dairy products exports 150 Domestic consumption of beverage products 220
70 Beverage imports 140 Beverage manufacturing	Beveraç260roducts	Beverage exports 40
3900 Dog and cat food imports		Dog and cat food domestic consumption 6800
	8400 Dog and cat food	Dog and cat food exports
4506 Dog and cat food manufacturing		Waste 506

Industrial flows (t/a)

Provincial flows Spatial distribution

Releases

Disposals

Industrial flows (t/a)

Provincial flows Spatial distribution

Disposals (kg/km²)

40

5

O

Releases (kg/km²) Releases Upscaled [kg/km²]

Potential of phosphorus recovery

European Space Agency/Flickr

P flows overview

Potential of P recovery

Cost of P recovery

Acknowledgments

Pollution Probe

Project Lead:

This project was undertaken with the financial support of:

Ce projet a été réalisé avec l'appui financier de:

Environment and Climate Change Canada Environnement et Changement climatique Canada

Participants:

Estimating spatial and temporal variability of Phosphorus hydrologic losses across the contiguous United States

SPS Session 2: Quantifying Phosphorus Flows and Impacts for Sustainable Nutrient Management

Presented by: Kimia Karimi Daniel R. Obenour

Nov 3, 2022

Center for Geospatial Analytics, NCSU, Raleigh, NC, USA Dept. of Civil, Construction and Environmental Engineering, NCSU, Raleigh, NC, USA

Introduction

- Excess phosphorus (P) from anthropogenic activities may subject to riverine (hydrologic) P export, causing water quality problems in lakes and coastal systems.
- Nutrient budgets have been used as a quantitative means of assessing the amount of nutrients imported to and exported from a system.
- However, at larger spatial scales, the estimates of hydrologic P losses are usually not available in the P budgets.

Sabo et al. (2021):

- Developed an inventory of inputs and outputs of P across the United States for 2002, 2007, and 2012.
- Agricultural P inputs were the largest ۲ source of P nationwide.
- Estimates of hydrologic losses/export ۲ were not considered in the inventory.

NC STATE UNIVERSITY

- Western Basins Eastern Basins Upper Mississippi Missouri **Central Mississippi** White Arkansas Ohio Red Lower Mississippi/Atchafalaya Monitoring Sites
- FIGURE 1. Location of the major hydrologic regions of the MARB and stream monitoring stations used to estimate the SPARROW models.

- Alexander et al. (2008):
 - Developed a SPARROW model to characterize P delivery to the Gulf.
 - Stations across the CONUS were used but the export coefficients were specific to the Mississippi river basins.
- Watersheds with predominantly urban and agricultural sources have the highest predicted nutrient yields.
Research questions

• How do hydrologic losses vary over space and time?

• Are hydrologic losses consistent with P inventories?

• What factors explain anomalies in P losses?

Approach

1. Estimate hydrologic losses of P (P loads) using flow and concentration data.

2. Develop a predictive model to identify potential drivers of spatio-temporal variability of P loads.

1- Selected sites

Estimating annual P loadings

- Weighted Regression on Time, Discharge, and Season (WRTDS; Hirsch et al. 2010).
- It determines unique regression coefficients for each estimation date.

WRTDS TP load estimate

Mean WRTDS estimates

2- Model development

$$Ln(load) = x\beta + \varepsilon$$
observed load (kg/km²/yr)
predictor variables
regression coefficients

Model variables

Gross Anthropogenic P Input (GAPI):

GAPI= [ag inputs: agricultural fertilizer + livestock waste + pesticides and herbicides] – [crop removal] + [point source] + [urban fertilizer] + [atmospheric deposition] (kg/yr)

Precipitation (mm)

Water and wetland fraction

Ecoregions

Variables: GAPI

Variables: Water and wetland fraction

Variables: Precipitation

Variables: Ecological regions of North America

Model development

*ln(kg-P/(km²yr) **ln(mm)

Ecoregions intercept

Preliminary results

• Hydrologic losses range from 1% to 64% of GAPI across the catchments and years.

• On average, the largest areal P losses occur in Mid-Atlantic and Great Lakes.

• Precipitation and ecoregions are the major predictors of P hydrologic losses.

More data to consider

- Soil P
- Long term P surplus
- Population/land use
- Waterbodies
- Extreme precipitation

Next steps

• Develop datasets for all years from 1997-2017.

• Explore covariate relationship change with different ecoregions (through hierarchical modeling).

• Estimate hydrologic losses on HUC8 scale.

 Integrate hydrologic losses with new P source data being developed to create a more comprehensive national P budget.

References

- Alexander, R. B., Smith, R. A., Schwarz, G. E., Boyer, E. W., Nolan, J. V., & Brakebill, J. W. (2008). Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin. Environmental science & technology, 42(3), 822-830.
- Hirsch, R. M., Moyer, D. L., & Archfield, S. A. (2010). Weighted regressions on time, discharge, and season (WRTDS), with an application to Chesapeake Bay river inputs 1. JAWRA Journal of the American Water Resources Association, 46(5), 857-880.
- Sabo, R. D., Clark, C. M., Gibbs, D. A., Metson, G. S., Todd, M. J., LeDuc, S. D., ... & Compton, J. E. (2021). Phosphorus inventory for the conterminous United States (2002–2012). *Journal of Geophysical Research: Biogeosciences*, *126*(4), e2020JG005684.

Acknowledgments

Geospatial Analytics

- Water quality portal: <u>https://www.waterqualitydata.us/</u>
- USGS: <u>https://waterdata.usgs.gov/nwis</u>
- PRISM: <u>https://prism.oregonstate.edu/</u>
- LAGOS: <u>https://lagoslakes.org/the-lagos-database/</u>
- Land use: <u>http://dx.doi.org/10.3133/ds948</u>

Questions:

kkarimi2@ncsu.edu drobenour@ncsu.edu